Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)*
dc.contributor.authorOchoa, Felipespa
dc.date.accessioned2015-07-22T21:13:55Z
dc.date.accessioned2016-05-11T14:36:23Z
dc.date.accessioned2017-05-16T17:09:03Z
dc.date.available2015-07-22T21:13:55Z
dc.date.available2016-05-11T14:36:23Z
dc.date.available2017-05-16T17:09:03Z
dc.date.created2013
dc.date.issued2013-07-01
dc.identifierhttp://revistas.usergioarboleda.edu.co/index.php/ccsh/article/view/135spa
dc.identifier.citationOchoa, F. (2013). De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. Revista Civilizar Ciencias Sociales y Humanas. 13(25), 157-176.spa
dc.identifier.issn1657-8953spa
dc.identifier.urihttp://hdl.handle.net/11232/296
dc.descriptionEste artículo analiza la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. En el Renacimiento se alegó que las matemáticas no cumplían con los criterios aristotélicos de cientificidad; ya que no explicaban las causas eficientes y finales. Así; sus críticos inspirados en la tradición aristotélica rechazaron los primeros intentos de matematizar la filosofía natural. Se examinan las condiciones epistemológicas implicadas en el debate sobre la cientificidad de las matemáticas y su pertinencia para la filosofía natural. Se hace un recorrido historiográfico de la matematización de la naturaleza para ofrecer nuevos elementos de ponderación respecto a una caracterización históricamente más contextual y filosóficamente más conceptual del surgimiento de la ciencia modernaspa
dc.description.abstractThis article analyzes the epistemological legitimation of mathematics in natural philosophy in the seventeenth century. In the Renaissance it was claimed that mathematics does not meet the Aristotelian criteria of scientificity; and that it did not explain the efficient and final causes. So; its critics; inspired by the Aristotelian tradition; rejected the first attempts to mathematize natural philosophy. The epistemological conditions involved in the debate are examined on the scientific nature of mathematics and its relevance to natural philosophy. A historiographical tour of the mathematization of nature is made to provide new weighing elements with respect to a historically and philosophically more conceptual characterization of the emergence of modern scienceeng
dc.format.mediumDigitalspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Sergio Arboledaspa
dc.relation.ispartofseriesRevista Civilizar Ciencias Sociales y Humanas; vol. 13, núm. 25 (2013)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.source.urihttp://revistas.usergioarboleda.edu.co/index.php/ccsh/article/view/135/126eng
dc.titleDe la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII.spa
dc.typearticleeng
dc.subject.lembFilosofía de las matemáticasspa
dc.subject.lembFilosofía natural Siglo XVIIspa
dc.type.spaArtículospa
dc.rights.accesoAbierto (Texto Completo)spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.format.tipodocumentosspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccesseng
dc.subject.keywordmatemáticasspa
dc.subject.keywordciencia modernaspa
dc.subject.keywordPiccolominiita
dc.subject.keywordClaviusspa
dc.subject.keywordBarozziita
dc.subject.keywordPereiraspa
dc.subject.keywordmathematicseng
dc.subject.keywordphilosophy of mathematicseng
dc.subject.keywordmodern scienceeng
dc.identifier.doihttps://doi.org/10.22518/16578953.135eng
dc.relation.referencesAristóteles. (1988). Tratados de Lógica: (Órganon) II: sobre la interpretación. Analíticos primeros. Analíticos segundos. Madrid: Gredos.spa
dc.relation.referencesAristóteles. (1995). Física (Trad. G. De Echandía). Madrid: Gredos.spa
dc.relation.referencesBarrow, I. (1734). The Usefulness of Mathematical Learning Explained and Demonstrated: Being Mathematical Lectures Read in the Public Schools of Cambridge. Londres: S. Austen.eng
dc.relation.referencesBiagioli, M. (1989). The social status of Italian mathematicians, 1450-1600. History of Science, 27, 41-95.eng
dc.relation.referencesBiancani, G. (1615). De mathematicarum natura dissertatio. Bolonia: B. Cocchi.lat
dc.relation.referencesBlay, M. (1998).Reasoning with the Infinite: From the Closed World to the Mathematical Universe. Chicago: University Press.eng
dc.relation.referencesClark, S. (1997). Thinking with Demons: The idea of witchcraft in early modern Europe. Oxford: Clarendon Press.eng
dc.relation.referencesClavius, C. (1612). Opera mathematica (Vols.1-5). Mainz: Reinhard Eltz.eng
dc.relation.referencesCrombie, A. C. (1952). Augustine to Galileo: The History of Science, A.D. 400-1650. London: Falcon.eng
dc.relation.referencesDear, P. (1987). Jesuit mathematical science and the reconstitution of experience in the early seventeenth century. Studies in History and Philosophy of Science, 18(2), 133-175.eng
dc.relation.referencesDear, P. (1995). Discipline and Experience. The Mathematical Way in the Scientific Revolution. Chicago: University Press.eng
dc.relation.referencesDear, P. (1998). The Mathematical Principles of Natural Philosophy: Toward a Heuristic Narrative for the Scientific Revolution. Configurations, 6(2), 173-193.eng
dc.relation.referencesDobbs, B. J. (2000). Newton as Final cause and First Mover. En M. Osler (Ed.), Rethinking the scientific revolution (pp. 25-39). New York, NY: Cambridge University Press.eng
dc.relation.referencesFeldhay, R. (1998). The use and abuse of mathematical entities: Galileo and the Jesuits revisited. En P. K. Machamer (Ed.), The Cambridge companion to Galileo (pp. 80-145). Cambridge: Cambridge University Press.eng
dc.relation.referencesFunkenstein, A. (1986). Theology and the scientific imagination from the Middle Ages to the seventeenth century. Princeton: Princeton University Press.eng
dc.relation.referencesGingras, Y. (2001). What did Mathematics do to Physics? History of Science, 39, 383-416.eng
dc.relation.referencesGuicciardini, N. (1989). The development of Newtonian calculus in Britain, 1700-1800. New York: Cambridge University Press.eng
dc.relation.referencesHall, A. R. (1981). From Galileo to Newton. New York: Dover.eng
dc.relation.referencesHall, M. B. (1952). The Establishment of the Mechanical Philosophy. Bruges: St. Catherine Press.eng
dc.relation.referencesHeath, T. L. (1956). The Thirteen Books of Euclid’s Elements. New York: Dover Publications.eng
dc.relation.referencesJardine, N. (1986). Epistemology of the sciences. En C. B. Schmitt, Q. Skinner & E. Kessler (Eds.), The Cambridge history of Renaissance philosophy (pp. 685-711). Cambridge: Cambridge University Press.eng
dc.relation.referencesKoyré, A. (1965). The significance of the Newtonian synthesis. En Newtonian studies (pp. 3-24). Cambridge: Cambridge University Press.eng
dc.relation.referencesKoyré, A. (1994). From the Closed World to the Infinite Universe. Baltimore: Johns Hopkins University Press.eng
dc.relation.referencesKoyré, A. (1997). La aportación científica del Renacimiento. En Estudios de historia del pensamiento científico (pp. 41-50). México: Siglo XXI Editores.spa
dc.relation.referencesMancosu, P. (1992). Aristotelian Logic and Eu-clidean Mathematics: Seventeenth Century Developments of the Quæstio de Certitudine Mathematicarum. Studies in History and Philosophy of Science, 23(2), 241-265.eng
dc.relation.referencesMancosu, P. (1996). Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century. New York: Oxford University Press.eng
dc.relation.referencesMoran, B. T. (2005). Distilling Knowledge: Alchemy, Chemistry, and the Scientific Revolution. Cambridge: Harvard University Press.eng
dc.relation.referencesNewman, W. R. (2006). Atoms and Alchemy: Chymistry and the experimental origins of the scientific revolution. Chicago: University of Chicago Press.eng
dc.relation.referencesNewman, W. R., & Grafton, A. (2001). Secrets of Nature: Astrology and Alchemy in Early Modern Europe. Cambridge: MIT Press.eng
dc.relation.referencesOchoa, F. (2001). Newton heteróclito: Problemas y límites del historiar a Sir Isaac Newton. Estudios de Filosofía, 24, 63-78.spa
dc.relation.referencesOchoa, F. (2012). Mathematics, Natural Philosophy, and Providential Theology: An inquiry into the ontological problem of the causation of gravity force in Newton’s physics. (Tesis Doctoral, Instituto de Filosofía, Universidad de Antioquia).eng
dc.relation.referencesOrozco, S. (2007). Modelos interpretativos del corpus newtoniano: Tradiciones historiográficas del siglo XX. Estudios de Filosofía, 35, 227-256.spa
dc.relation.referencesOrozco, S. (2009). Isaac Newton y la reconstitución del palimpsesto divino. Medellín: Editorial Universidad de Antioquia.spa
dc.relation.referencesOsler, M. J. (2000). Rethinking the Scientific Revolution. Cambridge: Cambridge University Press.eng
dc.relation.referencesPereira, B. (1591). De communibus omnium rerum naturalium principiis et affectionibus, libriquindecim. Venetiis: Andream Muschium.lat
dc.relation.referencesPiccolomini, A. (1576). La prima parte della filosofía naturale. Roma: Daniel Zaneti, & Compagni.ita
dc.relation.referencesPycior, H. (1997). Symbols, Impossible Numbers, and Geometric Entanglements: British Algebra Through the Commentaries on Newton’s Universal Arithmetick. New York: Cambridge University Press.eng
dc.relation.referencesRoux, S. (2010). Forms of Mathematization (14th-17th Centuries). Early Science and Medicine, 15(4-5), 319-337. doi: 10.1163/157338210X516242eng
dc.relation.referencesScheiner, C. (1614). Disquisitiones mathematicae de controuersii set nouitatibus astronomicis. Ingolstadii: Elisabetham Angermariam.lat
dc.relation.referencesSmiglecki, M. (1618). Logica Martini Smiglecii: Selectis disputationi bus et quaestioni bus illustrata. Ingolstadii: Eder.lat
dc.relation.referencesSmolarski, D. C. (2002a). Historical Documents, Part II.Two Documents on Mathematics. Science in Context, 15(3), 465-470. doi: 10.1017/S0269889702000583eng
dc.relation.referencesSmolarski, D. C. (2002b). Historical Documents, Part I. Sections on mathematics from the various editions of the Ratio Studiorum. Science in context, 15(3), 459-464.doi: 10.1017/S0269889702000571eng
dc.relation.referencesSorell, T. (1993). The Rise of Modern Philosophy: The Tension between the new and traditional philosophies from Machiavelli to Leibniz. Oxford: Clarendon Press.eng
dc.relation.referencesVickers, B. (1984). Occult and Scientific Mentalities in the Renaissance. Cambridge: Cambridge University Press.eng
dc.relation.referencesWallis, J. (1693-1699). Johannis Wallis Oxoniensi Opera mathematica: tribus volumini buscontenta. Oxford: Theatro Sheldoniano.eng
dc.relation.referencesYolder, J. G. (1988). Unrolling time: Christiaan Huygens and the Mathematization of Nature. Cambridge: Cambridge University Press.eng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2*
dc.identifier.instnameinstname:Universidad Sergio Arboledaspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Sergio Arboledaspa
dc.identifier.repourlrepourl:https://repository.usergioarboleda.edu.co/*
dc.title.translatedFrom Subordination to Hegemony On the Epistemological Legitimation of Mathematics in Natural Philosophy of XVII Century.eng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)