Show simple item record

dc.contributor.advisorAcosta Humánez, Primitivospa
dc.contributor.authorMartínez Castiblanco, Óscar Eduardospa
dc.date.accessioned2021-07-30T19:47:30Zspa
dc.date.available2021-07-30T19:47:30Zspa
dc.date.created2020spa
dc.date.issued2020spa
dc.identifier.citationMartínez Castiblanco, Ó. E.(2020). Simple Permutations, Pasting and Reversing. [Tesis de maestría]. Universidad Sergio Arboleda.spa
dc.identifier.urihttp://hdl.handle.net/11232/1704eng
dc.description.abstractIn this work, we will study a key result in Combinatorial Dynamics: the Sharkovskii Theorem. This theorem explains how periodic points are related in a map by genealogy. Then, we will explore simple permutations, since they are useful to show how forcing works in discrete dynamical systems. The works of Stefan, Berndhardt and AcostaHuma´nez about odd and power-of-two permutations will be studied, and finally, pasting and reversing techniques will be defined over permutations to state genealogy relationship over other orders.eng
dc.format.extent45spa
dc.format.mimetypeapplication/pdfeng
dc.publisherUniversidad Sergio Arboledaspa
dc.rightshttps://repository.usergioarboleda.edu.co/bitstream/id/722dd114-eb4d-4a9f-a35f-7c7a1c71a844/license.txteng
dc.titleSimple Permutations, Pasting and Reversing.spa
dc.subject.lembAnálisis combinatoriospa
dc.subject.lembPermutacionesspa
dc.subject.lembCampos aleatorios de Markovspa
dc.subject.lembOrbitas simples de Blockspa
dc.subject.lembDiseños de bloquesspa
dc.subject.lembDinámica combinatoriaspa
dc.subject.lembGrafos de Markovspa
dc.subject.lembOperación de pegamientospa
dc.subject.lembOperación de voltearspa
dc.subject.lembPuntos periódicosspa
dc.subject.lembTeorema de Sharkovskiispa
dc.subject.lembPermutaciones simplesspa
dc.subject.lembAnálisis matemáticospa
dc.subject.lembCombinatorial analysiseng
dc.subject.lembPermutationseng
dc.subject.lembMarkov random fieldseng
dc.subject.lembBlock’s Orbitseng
dc.subject.lembBlock designseng
dc.subject.lembCombinatorial dynamicseng
dc.subject.lembMarkov graphseng
dc.subject.lembPastingeng
dc.subject.lembPeriodic pointseng
dc.subject.lembReversingeng
dc.subject.lembSharkovskii’s Theoremeng
dc.subject.lembSimple permutationseng
dc.subject.lembMathematical analysiseng
dc.publisher.programMaestría en Matemáticas Aplicadasspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaeng
dc.publisher.departmentEscuela de Ciencias Exactas e Ingenieríaspa
dc.relation.referencesP. Acosta-Humánez, Genealogy of simple permutations with order a power of two (Spanish). Revista Colombiana de Matemáticas, 2 (2008), 1–14.eng
dc.relation.referencesP. Acosta-Humánez, Pasting operation and the square of natural numbers (Spanish). Civilizar, 2 (2003), 85–97.eng
dc.relation.referencesP. Acosta-Humánez, A. Chuquén, Pasting and Reversing Approach to Matrix Theory . JP Journal of Algebra, Number Theory and Applications, Volume 38, Number 6, (2016), 535–559eng
dc.relation.referencesP. Acosta-Humánez, A. Chuquén, A. Rodríguez, On Pasting and Reversing operations over some rings, Boletín de Matemáticas Universidad Nacional, Volume 17, Issue 2,(2010), 143–164.eng
dc.relation.referencesP. Acosta-Humánez, P. Molano, A. Rodríguez, Algunas Observaciones sobre Pegar y Reversar en Números Naturales Revista MATUA, Volumen 2, Número 1,(2015), 65–94.spa
dc.relation.referencesP. Acosta-Humánez, O.E. Martínez Castiblanco, Simple Permutations with Order 4n+2 by Means of Pasting and Reversing Qual. Theory Dyn. Syst. 15, 181–210 (2016). DOI: 10.1007/s12346-015-0161-0eng
dc.relation.referencesK. Alligood, T. Sauer and J. Yorke, Chaos - An introduction to dynamical systems, Textbooks in mathematicas sciences, Springer-Verlag New York (1996).eng
dc.relation.referencesLL. Alseda, J. Llibre and M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, second edition, World Scientific publishing Vol 5 15 (2005).eng
dc.relation.referencesLl, Alseda, J. Llibre, R. Serra, Minimal periodic orbits for continuous maps of the interval, Transactions of the American Mathematical Society, Volume 286, Issue 2, 2 (1977), 595–627.eng
dc.relation.referencesC. Bernhardt, Simple permutations with order a power of two, Ergodic Theory and Dynamic Systems, 2 (1984), 179–186.eng
dc.relation.referencesP. Blanchard, R.L. Devaney, and G.R. Hall., Differential Equations Belmont, CA: Thomson Brooks/Cole, (2006).eng
dc.relation.referencesL. Block, Dynamic in one dimension, Lecture Notes in mathematics, Springer Verlag, New York, 2 (1986).eng
dc.relation.referencesL. Block, Simple periodic orbits or mappings of the interval, Transactions of the American Mathematical Society, Volume 254, 2 (1979), 391–398.eng
dc.relation.referencesR.L. Devaney, An Introduction to Chaotic Dynamical Systems Addison-Wesley Publishing Company, (1989).eng
dc.relation.referencesM. Henón, A Two-dimensional Mapping with a Strange Attractor. Communications in Mathematical Physics. Vol 50 Num. 1 , 1976.eng
dc.relation.referencesC. Ho, On the structure of minimum orbits of periodic points for maps on the real line, Preprinteng
dc.relation.referencesV. Katz, A history of Mathematics: an introduction Addison-Wesley Educational Publishers, Inc. (1998).eng
dc.relation.referencesT-Y Li, J.A. Yorke, Period Three Implies Chaos. The American Mathematical Monthly, Vol. 82, No. 10. (Dec., 1975), pp. 985-992.eng
dc.relation.referencesE.N. Lorenz, Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences Vol. 2 Num. 2 , 1963.eng
dc.relation.referencesR. Lozi, Un Attracteur Etrange (?) Du Type Attracteur de Hénon . J. Phys. Colloques. Vol 39 Num. C5 , 1978.eng
dc.relation.referencesO.E. Martínez, Acosta-Humánez, Primitivo, Un enfoque geométrico del teorema de Sharkovskii. En Perry, Patricia (Ed.), Memorias del 20 Encuentro de Geometría y sus Aplicaciones. (pp. 77-84). Bogotá, Colombia: Universidad Pedagógica Nacional, 2011.spa
dc.relation.referencesR. May, Simple Mathematical Models With Very Complicated Dynamics Nature. Vol 261, Num. 459, 1976.eng
dc.relation.referencesM. Misiurewicz, Thirty years after Sharkovskii’s theorem, Thirty years after Sharkovskii’s theorem: new perspectives, Murcia 2 (1995), 13–20.eng
dc.relation.referencesM. Misiurewicz, Strange Attractors For The Lozi Mappings. Annals of the New York Academy of Sciences. Vol 357 Num. 1 , 1980.eng
dc.relation.referencesM. Misiurewicz, S. Stimac, Symbolic Dynamics for Lozi maps. Nonlinearity. Vol 29 Month. 1 , 2016.eng
dc.relation.referencesH. Poincar´e, Sur le probléme des trois corps et les ´equations de la dynamique, Acta mathematica, Volume 13, (1890), 1–270fre
dc.relation.referencesA. Sharkovskii, Coexistence of cycles of a continuous map of the line into itself, Ukrain Mat. Zh. 16 (1964), 61–71.eng
dc.relation.referencesA. Sharkovskii, Coexistence of cycles of a continuous map of the line into itself, Thirty years after Sharkovskii’s theorem: new perspectives, Murcia 2 (1995), 1–12.eng
dc.relation.referencesP. Stefan, A theorem of Sharkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Communications in mathematical physics, Springer Verlag, New York 2 (1977), 237–248eng
dc.relation.referencesJ-C. Yoccoz, Polynomes quadratiques et attracteur de Hénon Seminaire N. Bourbaki. Exp. 734, 1990-1991.fre
dc.relation.referencesZ. Elhadj, Lozi Mappings: Theory and Applications. CRC Press , 2014.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcceng
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.subject.proposalblock’s orbitseng
dc.subject.proposalcombinatorial dynamicseng
dc.subject.proposalmarkov graphseng
dc.subject.proposalpastingeng
dc.subject.proposalperiodic pointseng
dc.subject.proposalreversingeng
dc.subject.proposalsharkovskii’s theoremeng
dc.subject.proposalsimple permutationseng
dc.description.degreenameMagister en Matemáticas Aplicadasspa
dc.description.degreelevelMaestríaspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record