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water vapour pressure in the atmosphere, brought about through enhanced 
evapotranspiration? Or is the upward blip simply a consequence of a fall in 
the temperature? In fact, in evaluating the changes in the specific humidity 
we can show, as we would expect, that the curve follows precisely that asso-
ciated with the partial pressure of water vapour curve and its derived partial 
pressure force. In that respect, the upward jump in relative humidity is seen 
to be associated with a rise in the specific humidity (graph 45). 

Research into the relationship between temperature and 
evapotranspiration for various crops, such as beans, wheat and soya, 
suggests that an increase in surface temperature associated with a reduction 
in relative humidity causes the crop to respond through the forming of a 
large water vapour differential, according to Fick’s diffusion law. In general, 
the crop takes up from the soil and transpires some 500 kg of water for each 
kilogram of new dry matter formed. Whatever the prime mover, our interest 
is in the relationship between temperature changes and stomatal regulation 
of transpiration.

To summarise: leaf internal temperatures during periods of daylight 
tend to be higher than those of ambient air on account of the leaf having 
a lower albedo and therefore a higher absorption of sunlight. That higher 
leaf temperature will lead to a higher vapour differential and therefore to an 
increased escape of water vapour from the leaf to the exterior, which can even 
occur when the ambient relative humidity is 100 per cent. Like sweating, the 
evaporation of water from inside the leaf requires latent heat of evaporation, 
some 44 KJ/mol, which will therefore result in cooler leaf temperatures. 
Indeed, plant physiologists recognise that cooler leaf temperatures in the heat 
of the day may be a necessary condition for better photosynthetic efficiency, 
given that at higher temperatures the Rubisco-related reaction with oxygen 
increases, thereby reducing the availability of the enzyme system for CO2 
conversion as a necessary step in photosynthesis. The Rubisco-oxygen 
reaction is known as photo-respiration and it is characteristic of C-3 plants 
in particular. One would therefore expect the stomata to open fully as the 
ambient temperature increases, such as to increase the flow of water vapour 
and thereby to cool the leaf surface exposed to the Sun.

However, during drought conditions plants may become water-stressed 
particularly, as is the case with many crops, they have a short-rooting system. 
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When water-stressed, plants respond by reducing water-loss through stoma-
tal-closure which in turn will reduce net primary production and, moreover, 
will lead to higher leaf temperatures. If the water stress continues the leaf 
may become damaged and no longer capable of maintaining photosynthesis. 

Much of the literature on water vapour exchanges between vegetation 
and the ambient air expresses the view that the loss of water via transpiration 
is a necessary evil of successful primary photosynthetic production. 
Undoubtedly such views on plant-to-air water exchanges have largely 
been formed by plant physiologists who have focussed on crop and cultivar 
production, in particular when considering the net economic advantages of 
irrigation (Cruiziat, 2006).

Yet, it has become increasingly clear to climatologists and hydrologists 
that evapotranspiration helps maintain humidity, especially below the closed 
canopy of a humid tropical rainforest, thereby helping to keep soils moist 
and compensating for run-off. Indeed, as mentioned before, rainfall over the 
Amazon Basin, particularly in the central and western reaches, depends on a 
high rate of evapotranspiration. One concern relates to the impact of global 
warming associated with a doubling of pre-industrial levels of CO2 – from 
280 to 560 parts per million by volume – on the ecosystem functioning of the 
rainforest. Both higher ambient temperatures and higher CO2 atmospheric 
levels will bring about the increased closure of stomata such as to reduce the 
exchanges of water vapour even when the ambient relative humidity falls. 
That loss of evapotranspiration potential could have a marked impact on the 
recycling of water vapour over the Amazon Basin such as to reduce rainfall 
significantly in the more western reaches (Betts, Sanderson, & Woodward, 
2008; Betts et al., 2002).

Furthermore, if the evaporative biotic pump mechanism functions as 
dictated by physics, a marked reduction in the water vapour partial pressure 
at the surface will lead to a lower if not a vanishing partial pressure gradient 
between the Amazon Basin and the tropical Atlantic Ocean such as to reduce 
the flow of the trade winds across the Basin. That reduced flow, associated 
with declining rainfall could bring about a sharp reduction in what are now 
the rich tropical rainforests to the west of the Basin and to the piedmont 
forests and cloud forests, which also play a fundamental role in precipitation 
patterns.
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D. Eamus and S. T. Shanahan have studied the relationship of the water 
vapour pressure deficit (VPD in kPa) and stomatal closure under different 
conditions, taking into account cuticle transpiration as a significant compo-
nent of overall evaporation (ET) from the leaf surface. 

They observed: 

The three phases of stomatal responses to VPD. For well 
watered leaves, as VPD increased from approximately 0.5 kPa to 
approximately 5 kPa, ET (evapotranspiration) increased for small 
to moderate increases in VPD (from 0.5 to 2.5 kPa), remained 
approximately constant for moderate values of VPD (about 2.5–3.5 
kPa) and then ET decreased for larger values of VPD. Thus, stomata 
did not regulate ET with increasing VPD when VPD was low to 
moderate, but stomata did limit ET when VPD was moderate to 
large (Eamus & Shanahan, 2002, p. 4).

And:

At low values of [VP]D, E[T] increases with increasing [VP]D 
because the supply of water to the guard cell is sufficient to maintain 
guard cell volume and hence turgor, despite increasing losses of 
water from the guard cell through peristomatal transpiration and 
loss into the sub-stomatal cavity. Because turgor is maintained, 
stomatal aperture is maintained and hence transpiration increases 
with increasing [VP]D. At this stage, peristomatal transpiration is a 
very small fraction of total transpiration. However, above a certain 
value of [VP]D, the supply of water to the guard cell becomes 
insufficient to maintain guard cell volume. It is both peristomatal 
transpiration and water loss into the sub-stomatal cavity that causes 
the decline in guard cell volume and hence decreased aperture and 
hence lower transpiration. This loss of water from the guard cell 
therefore feeds back on guard cell volume, and aperture, such as 
to cause declining aperture at a rate sufficient to cause declining 
E[T] (pp. 5-6).

Our results from three OTC meteorological sites in Costa Rica, namely 
Palo Verde, La Selva and las Cruces, of the Vapour Pressure Deficit (VPD) 
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during the 24 hours show defi nite changes, with the major defi cit occurring 
during daylight hours when the temperature rises. For Las Cruces, which is 
at 1200 metres above sea level and which harbours well-conserved premon-
tane wet tropical forest, the day-time temperature does not generally exceed 
26°C. The VPD remains below 1 kPa and, distinct from the other two sites, 
the partial water vapour pressure tends to rise as temperature rises and any 
dips during the daylight hours are considerably smaller than the plunging 
dips of partial pressure and specifi c humidity associated with temperature 
rises of >30°C which occur at La Selva and Palo Verde (graphs 47 and 48). 

Graph 47. Las Cruces, 2nd May, 2012

Note: It shows a direct relationship between the Vapour pressure defi cit and diurnal 
temperature. Source: Author.
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Graph 48. La Selva, 1st May, 2012

Source: Author. 

Experimental results: the ultimate proof?

Finally, I refer back to the physical experiment as depicted in fi gures 9 - 
10. Preliminary results indicate that condensation leads to airfl ow in a clock-
wise direction. I use webcams to follow the movement of light gauzes and 
video recordings indicate that the movement begins some 30 seconds after 
the cooling compressor is switched on. That movement is verifi ed quantita-
tively through the use of sensitive anemometers. Together with Dr. Martin 
Hodnett, now retired from the UK Centre for Ecology and Hydrology, we 
are in the process of upgrading the instrumentation and already are obtain-
ing outstanding results. 

The preliminary results we have obtained consistently indicate a close 
correlation between the rate of condensation of water vapour, as induced 
through the use of refrigeration coils, and the airfl ow, which shows a marked 
directionality during different phases in the experimentation. The partial 
pressure change during 5 second intervals can be readily calculated from 
humidity, temperature and pressure changes. Likewise we can calculate air 
density changes and from those data we can calculate the expected wind 
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velocity, using the kinetic energy equation whereby the power in Watts = 
0.5 * air density ρ, * Area (square metres) * velocity cubed, V3. Since 1 Pa 
(Pascal) per cubic metre = 1 Newton = 1 Joule.metre and 1 Joule.second = 
1 Watt, then 1 Pa change in partial pressure per second, per square metre 
= 1 Watt. Therefore, with p being pressure in pascals, V velocity in m/s and 
the air density,

When we carry out such calculations we obtain a remarkable correspon-
dence between the airflow induced through condensation and the calculated 
kinetic airflow. Naturally, the partial pressures of water vapour as well as air 
density depend on local conditions of temperature, humidity and barometric 
pressure according to the equations of state for ideal gases. Therefore,

Where p is pressure in Pa, R is the ideal gas constant, calculated for 
changes in the proportion of water vapour to dry air, and T is the tempera-
ture in Kelvin.

Hence, it is not surprising that changes in temperature follow the trajec-
tory of the airflow, since it underpins the change in the partial pressure of 
water vapour which in turn will affect air density. Nevertheless, the best fit is 
between the calculated airflow and the empirically derived airflow.

The 100 per cent repetitive results from the experiment showing a tight 
correlation between the calculated and actual airflow suggest strongly that 
the physics underlying the biotic pump theory must be correct and therefore 
an active principle that should be accounted for in relation to the larger 
atmosphere outside the experimental structure. The set of experiments 
therefore adds substance to the findings of significant correlations between 
the partial pressure force of water vapour and surface airflow, again with a 
strong directionality, for la Selva in Costa Rica. 

𝜔𝜔! =
𝐸𝐸

𝑁𝑁!!!
	
  

	
  
	
  

𝐵𝐵𝐵𝐵𝐵𝐵  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑝𝑝 =   𝑝𝑝! +   𝑝𝑝!   −  𝑝𝑝!cos
𝜋𝜋𝜋𝜋
12 ∗ sin

𝜋𝜋𝜋𝜋
12 	
  

	
  
	
  
	
  

CAPÍTULO	
  4	
  
	
  

𝑉𝑉! =   
2∆𝑝𝑝
𝜌𝜌 	
  

	
  
𝑝𝑝
𝑅𝑅𝑅𝑅 =   	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

𝜔𝜔! =
𝐸𝐸

𝑁𝑁!!!
	
  

	
  
	
  

𝐵𝐵𝐵𝐵𝐵𝐵  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑝𝑝 =   𝑝𝑝! +   𝑝𝑝!   −  𝑝𝑝!cos
𝜋𝜋𝜋𝜋
12 ∗ sin

𝜋𝜋𝜋𝜋
12 	
  

	
  
	
  
	
  

CAPÍTULO	
  4	
  
	
  

𝑉𝑉! =   
2∆𝑝𝑝
𝜌𝜌 	
  

	
  
𝑝𝑝
𝑅𝑅𝑅𝑅 =   	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



96

peTeR bUNYARD

Graph 49. Rate of change in calculated airfl ow vs anemometer airfl ow

Source: Author. 

Graph 50. Condesation rate airfl ow

Source: Author.
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Graph 51. Experiment

Source: Author. 

In the graph the windspeed (left axis) as measured with the 2-D ane-
mometer m/s, the condensation rate (right axis), with left column green and 
right column red. Close correspondence is seen between airfl ow and conden-
sation. The suction caused by the change of pressure brought about through 
water vapour condensation results in a sharp increase in airfl ow. The black 
line represents the measured airfl ow, using a moving average of 3, similarly, 
the green line represents the rate of condensation in grams per second of 
the right column (where the condensation coils are located, and the red line 
represents the left column).

These experimental results, as shown in graphs 50 to 57, indicate a close 
correlation between airfl ow plus its directionality, hence clockwise fl ow, and 
the rate of condensation as brought about through the cooling coils. That 
correlation is mirrored by the tight fi t between the measured airfl ow and the 
calculated airfl ow. Moreover, even when the temperature is higher and the 
air density lower in the right column compared to the left column, the fl ow 
caused by condensation still imposes itself with air moving clockwise and 
therefore from left to right in the upper connecting tunnel. That movement is 
clearly seen in the inclination of the gauze sited at the top of the left column.
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Graph 52. Airfl ow versus partial pressure change

Note: Experimental results. Source: Author. 

Graph 53. Airfl ow and partial pressure change

Note: We see an inverse relationship and as the partial pressure water vapour (ppwv) reduces 
because of condensation so the airfl ow increases and vice versa. Source: Author. 
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Graph 54. Calculated airfl ow at condenser versus airfl ow in right and left columns 

Source: Author. 

Graph 55. Counterfl ow in action when the condenser is switchedoff 

Note: The brown curve shows the pressure change as a result of air density in the right 
column being less dense than in left. Nevertheless, the clockwise airfl ow resulting 
from condensation overrides the air fl ow resulting from the density difference. Source: 

Author. 
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Graph 56. Experiment, air density

Note: A higher air density in the left column means that the clockwise airfl ow, as measured, 
runs against the inclination of the air mass to move in the counter-clockwise direction, hence 
giving credence to the notion that the pressure change caused by condensation is the primary 

driving force. Source: Author. 
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In conclusion, if the interpretation of my findings can be 
verified, that there is a connection between humidity as 

measured as an evaporative force (hPa/km) and between 
changes in wind speed, with the wind accelerating as the 
partial pressure force increases during the sunlight hours, 
admittedly with a lag period of 30 minutes or more, then 
that would definitely lend support to the Biotic Pump 
Theory of Makarieva and Gorshkov. In addition, it would 
add weight to the perception that the hydrological function 
of rainforests is far more important than their ability to 
act as sinks for atmospheric carbon dioxide. Indeed, ET 
is a cooling process, thereby contributing to reduce global 
warming and climate change. 

Certainly the experimental results are unequivocal in 
showing a close correlation (>0.9) between condensation, 
as measured through the change in partial pressure of 
water vapour, and the airflow. When the change in partial 
pressure is converted to velocity through a standard kinetic 
energy equation we see a close fit between that measured 
and that calculated. Moreover, the quantity change in the 
partial pressure in hPa is of the same order as theoretically 
derived by Makarieva and colleagues (Makarieva et al., 
2013). That experimental finding would seem to go a 
considerable way in proving the general physics of the 
biotic pump theory. In addition it shows that the scalar 
difference between the experimental structure and the 
atmosphere outside (one thousand-fold difference) does 
not bring about anomalies; rather the physics is the same 
and the resulting dynamics may be similar.
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The implications are clear: we must include the principles underlying the 
biotic pump theory in our concerns over the climatic and hydrological con-
sequences of deforestation, be that in the equatorial tropics or in higher lati-
tudes. The biotic pump principle indicates that contiguous forests stretching 
from the ocean inland, across a continent, will modulate and moderate the 
airflows such as to reduce the strength of cyclonic winds, quite aside from 
their attributes as windbreaks. In using carbon balances and hence carbon 
trading as a measure of potential reductions in atmospheric carbon dioxide, 
we are in danger of neglecting the hydrological role of forests. A plantation 
which has no closed canopy nor under-storey may capture carbon dioxide 
during its growth, but it will not serve in maintaining gentle airflows nor a 
humidity curve in the lower atmosphere which is propitious for the transport 
of moisture and for generating rain in the interior of continents.

Without question, the fundamental work of Anastassia Makarieva and 
Victor Gorshkov has stimulated a number of research projects, not least that 
indicated in the pages of this monograph. The experiments would appear to 
show the validity of the general principle underlying the biotic pump; that it 
is the result of high rate of condensation.

Nevertheless, more work needs to be done, more evidence brought to bear 
before the climatological community will accept the biotic pump theory and 
its implications for modelling climate change, especially when incorporating 
the hydrological principles connected to continental rainforests. 
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